
International Journal of Electrical, Electronics ISSN No. (Online): 2277-2626

 and Computer Engineering 3(2): 13-16(2014)

 Map Reduce algorithm for Data Compression

Anindita Khade* and Dr. Subhash K. Shinde**
*Research Scholar, Department of Computer Science Engineering,

Lokmanya Tilak College of Engineering, Koparkhairane, Navi Mumbai, (MS), India

**Professor, Department of Computer Science Engineering,

Lokmanya Tilak College of Engineering, Koparkhairane, Navi Mumbai, (MS), India

 (Corresponding author: Anindita Khade)

(Received 05 May, 2014 Accepted 28 July, 2014)

ABSTRACT: File compression brings two major benefits: it reduces the space needed to store files, and it

speeds up data transfer across the network, or to or from disk. When dealing with large volumes of data, both
of these savings can be significant, so it pays to carefully consider how to use compression in Hadoop. For

data intensive workloads, I/O operation and network data transfer will take considerable time to complete.

When using Hadoop, there are many challenges in dealing with large data sets. Regardless of whether you

store your data in HDFS or ASV, the fundamental challenge is that large volumes can easily cause network

and I/O bottlenecks. One of the best known techniques of data compression is dictionary encoding.

MapReduce, many instances of “map” steps process individual blocks of an input file to produce one or more

outputs; these outputs are passed to “reduce” steps where they are combined to produce a single end result.

In this paper we propose a MapReduce algorithm that efficiently compresses and decompresses a large

amount of data. For testing purpose we use Hadoop Framework.

Keywords: Data Compression, Hadoop, HDFS, MapReduce

I. INTRODUCTION

A concise, contemporary definition of big

data from Gartner defines it as "high-volume, -velocity

and -variety information assets that demand cost-

effective, innovative forms of information processing
for enhanced insight and decision making". So, big data

can comprise structured and unstructured data, it exists

in high volumes and undergoes high rates of change.

The key reason behind the rise of big data is its use to

provide actionable insights. Typically, organisations

use analytics applications to extract information that

would otherwise be invisible, or impossible to derive

using existing methods.

Industries such as petrochemicals and financial services

have been using data warehousing techniques to

process very large data sets for decades, but this is not

what most understand as big data today. The key
difference is that today's big data sets include

unstructured data and allow for extracting results from a

variety of data types, such as emails, log files, social

media, business transactions and a host of others. For

example, sales figures of a particular item in a chain of

retail stores exist in a database and accessing them is

not a big data problem .But, if the business wants to

cross-reference sales of a particular item with weather

conditions at time of sale, or with various customer

details, and to retrieve that information quickly, this

would require intense processing and would be an

application of big data technology.

A. Big Data Storage

One of the key characteristics of big data applications is

that they demand real-time or near real-time responses.

If a police officer stops a car they need data on that car

and its occupants as quickly as possible. Likewise, a
financial application needs to pull data from a variety of

sources quickly to present traders with correlated

information that allows them to make buy or sell

decisions ahead of the competition. Data volumes are

growing very quickly - especially unstructured data - at

a rate typically of around 50% annually. As we move

forward, this will only likely increase, with data

augmented by that from growing numbers and types of

machine sensors as well as by mobile data, social media

and so on. All of which means that big data

infrastructures tend to demand high processing/IOPS
performance and very large capacity. The methodology

selected to store big data should reflect the application

and its usage patterns. Traditional data warehousing

operations mined relatively homogenous data sets,

often supported by fairly monolithic storage

infrastructures in a way that today would be considered

less than optimal in terms of the ability to add

processing or storage capacity. By contrast, a

contemporary web analytics workload demands low-

latency access to very large numbers of small files,

where scale-out storage - consisting of a number of
compute/storage elements where capacity and

performance can be added in relatively small

increments - is more appropriate. That implies a

number of storage approaches. Firstly, there is scale-out

NAS. This is file level access storage in which storage

nodes can be daisy-chained together and storage

capacity or processing power can be increased as nodes

are added. Meanwhile, the presence of parallel file

systems that scale to billions of files and peta bytes of

capacity allow for truly big data sets that can be linked

together across locations and interrogated.

I

J E

E

CE

 Khade and Shinde 14

Major scale out NAS products for big data include:

EMC Isilon with its OneFS distributed file system;

Hitachi Data Systems’ Cloudera Hadoop Distribution

Cluster reference architecture; Data Direct Networks

hScaler Hadoop NAS platform; IBM SONAS; HP

X9000, and NetApp, which has now reached version

8.2 of its DATA Ontap scale-out operating system.

Another possible approach that allows to very large sets
of data is object storage. This sees the replacement of

the traditional tree-like file system with a flat data

structure in which files are located by unique IDs,

something like the DNS system on the internet. This

potentially makes the handling of very large numbers of

objects less taxing than is the case with a hierarchical

structure. Object storage products are increasingly able

to work with big data analytics environments and

products include Scality’s RING architecture, Dell DX,

EMC’s Atmos platforms.

B. Need for compression

When using Hadoop, there are many challenges in

dealing with large data sets. Moreover, the internal

MapReduce “shuffle” process is also under huge I/O

pressure, and must often “spill out” intermediate data to

local disks before processing can advance from the Map

phase to the Reduce phase. Disk I/O and network

bandwidth is a precious resource for any Hadoop

cluster. Therefore, compressing files for storage can not

only save disk space, but also speed up data transfer

across the network. More importantly, when processing

large volumes of data in a MapReduce job, the

combination of data compression and decreased
network load can sometimes bring significant

performance improvements, due to the reduced I/O and

network resource consumption throughout the

MapReduce process pipeline. Enabling compression is

typically a trade off between I/O and speed of

computation. Compression will typically reduce I/O

and decrease network usage. Compression can happen

when the MapReduce code reads the data or when it

writes it out. When a MapReduce job is run against

compressed data, CPU utilization is increased, because

data must be de-compressed before files can be
processed by the Map and Reduce tasks. Therefore,

decompression usually increases the time of the job.

However, we have found that, in most cases, the overall

job performance will be improved by enabling

compression in multiple phases of the job

configuration.

C. Dictionary Encoding

A dictionary coder, also sometimes known as

a substitution coder, is a class of lossless data

compression algorithms which operate by searching for

matches between the text to be compressed and a set

of strings contained in a data structure (called the
‘dictionary’) maintained by the encoder. When the

encoder finds such a match, it substitutes a reference to

the string's position in the data structure.

II. LITERATURE SURVEY

Single machine dictionary encoding is used in RDF

storage engines like Hexastore, 3Store and Sesame to

store the information more efficiently [10-12].

Inference engines like Reasoning-Hadoop [3] and

OWLIM [13] also compress the data with this

technique. Dictionary encoding is not only used within

the Semantic Web but also in several other domains. In

[15] dictionary encoding is used for image

compression. In [14] the authors present some parallel

techniques to compress data using an pre-existing

dictionary. In some domains, the dictionary is small

enough to be kept in main memory. A good comparison

between the performance of different in-memory data

structures is given in [16]. From the comparison, it is

clear that the hash table is the fastest data structure. [17]

proposes a new data structure, called burst trie which

maintains the strings in sorted, or near- sorted order,

and has performance comparable to the one of a tree.

III. APACHE HADOOP AND MAP REDUCE

Hadoop is an open source software framework that

supports data-intensive distributed applications.

Hadoop is licensed under the Apache v2 license. It is

therefore generally known as Apache Hadoop. Hadoop

has been developed, based on a paper originally written

by Google on Map Reduce system and applies concepts

of functional programming. Hadoop is written in the

Java programming language and is the highest-level

Apache project being constructed and used by a global

community of contributors. Hadoop was developed by

Doug Cutting and Michael J. Cafarella. It is made up of
2 parts : HDFS and Hadoop MapReduce.

Fig.1. HDFS Architecture.

 Khade and Shinde 15

A. Working with HDFS

The file content is split into large blocks (typically 128

megabytes), and each block of the file is independently

replicated at multiple Data Nodes. The blocks are

stored on the local file system on the datanodes. The

Namenode actively monitors the number of replicas of

a block. When a replica of a block is lost due to a

DataNode failure or disk failure, the NameNode creates
another replica of the block. The NameNode maintains

the namespace tree and the mapping of blocks to

DataNodes, holding the entire namespace image in

RAM.

The NameNode does not directly send requests to

DataNodes. It sends instructions to the DataNodes by

replying to heartbeats sent by those DataNodes. The

instructions include commands to: replicate blocks to

other nodes, remove local block replicas, re-register and

send an immediate block report, or shut down the node.

B. Map Reduce Programming model

MapReduce is a programming model and an associated

implementation for processing and generating large

data sets with a parallel distributed algorithm on

a cluster. A MapReduce program is composed of

a Map() procedure that performs filtering and sorting

(such as sorting students by first name into queues, one

queue for each name) and a Reduce() procedure that

performs a summary operation (such as counting the

number of students in each queue, yielding name

frequencies). The “MapReduce System” (also called

“infrastructure” or “framework”) orchestrates the

processing by marshalling the distributed servers,

running the various tasks in parallel, managing all

communications and data transfers between the various

parts of the system, and providing

for redundancy and tolerance. The model is inspired by

the map and reduce functions commonly used
in functional programming, although their purpose in

the MapReduce framework is not the same as in their

original forms. The key contributions of the

MapReduce framework are not the actual map and

reduce functions, but the scalability and fault-tolerance

achieved for a variety of applications by optimizing the

execution engine once. As such, a single-

threaded implementation of MapReduce will usually

not be faster than a traditional implementation. Only

when the optimized distributed shuffle operation (which

reduces network communication cost) and fault

tolerance features of the MapReduce framework come
into play, is the use of this

model beneficial.

MapReduce libraries have been written in many

programming languages, with different levels of

optimization. A popular open-source implementation is

Apache Hadoop. The name MapReduce originally

referred to the proprietary Google technology but has

since been generalized.

Fig. 2. Map Reduce Programming Model.

VI. MAP REDUCE BASED DICTIONARY

ENCODING ALGORITHM

MapReduce can be either used alone or in combination

with an external DBMS. If we would use an external

DBMS to store the dictionary table, we can minimize

the number of queries exploiting the sorting ability of

MapReduce. In this case, we could write an appropriate
map function so that all the statements that share the

same term in the same position would be grouped

together. The reduce function could query the DBMS

once per group and replace at most one term in each

statement. The advantage of this approach compared to

the naive one is that here we need to query the DBMS

only once per term, and not at every occurrence.

However, the performance will suffer from load

balancing problems because the statements are grouped

on the single terms, and some of them will generate

groups that are too large to be processed by a single

machine. We propose an alternative algorithm which

does not use an external dictionary, but instead builds it

internally. We do not execute one job for each part of
the statements, but instead we first deconstruct the

statements, replace the terms with the numerical IDs,

and finally reconstruct them. It internally consists of 3

Map Reduce tasks. The first one creates the dictionary.

The second encodes the data with the dictionary

algorithm. The third decodes the encoded file back to

normal.

 Khade and Shinde 16

V. RESULTS AND OBSERVATIONS

We have implemented this algorithm using 1 master

and 2 slaves. The size of dataset (for experimental

purpose) we took is of 1.4 KB. We have also compared

our algorithm with 2 known text compression

algorithms. The results are as follows:

Table 1 : Comparison of results.

Algorithm

Used

Rate of

compressi

on

Size of file

after

compressi
on

Com

p.

time

Decomp.

time

MapReduc

e algorithm

1.93 724Bytes 50

secs

70 secs

GZip 1.85 756Bytes 7

secs

10 secs

Approx.

BZip2 1.86 751Bytes 10

secs

10 secs

Approx.

VI. CONCLUSIONS AND FUTURE WORK

Thus a map reduce based encoding algorithm for text

compression has been implemented. We have used

Hadoop framework for our testing purpose. The results

show that in a distributed environment, our Map reduce

algorithm is slower as compared to the other two, but

size of file after compression is less as compared to

them. Hence we conclude that this algorithm can be
used when we need to compress large files for storage

purpose. We also conclude that the time required to

decompress files using this algorithm is higher as

compared to the compression algorithm. Future work

can be suggested as to use this compression algorithm

for multimedia compression. The work we have

presented can be extended in many different ways. For

example, the current algorithm can compress the data

only once because the dictionary is built from scratch.

Future work could aim to expand the algorithm to deal

with incremental updates without recompressing the

entire input every time.

REFERENCES

[1]. Jacopo Urbani, Jason Maassen, Henri Bal

.Massive Semantic Web data compression with

MapReduce, Proceedings of the 19th ACM

International Symposium on High Performance

Distributed Computing, 2010.

[2]. J. Dean and S. Ghemawat, Mapreduce: Simplified

data processing on large clusters. In proceedings of the

USENIX Symposium on Operating Systems Design and

Implementation (OSDI), pages 137(147), 2004.

[3]. J. Urbani, S. Kotoulas, E. Oren, and F.van
Harmelen. Scalable distributed reasoning using

mapreduce, In Proceedings of the ISWC '09, 2009.

[4]. H. Yang, A. Dasdan, R. Hsiao, and D. Parker. Map

reduce merge: simplified relational data processing on

large clusters.

[5]. Makho Ngazimbi, Data clustering using

Mapreduce.

[6]. Nascif A. Abousalh-Neto, Sumeyye Kazgan,

Bigdata Exploration through visual analytics.

[7]. Jens Dittrich Jorge-Arnulfo Quian´e-Ruiz,

Efficient Big Data Processing in Hadoop MapReduce.

[8]. Tom White, Hadoop-The Definitive Guide.

[9]. Compression in Hadoop, Microsoft White paper.

[10]. D. Abadi, A. Marcus, S. Madden, and K.

Hollenbach. Scalable semantic web data management

using vertical partitioning. In Proceedings of the

33rd international conference on Very large data bases,

pages 411-422. VLDB Endowment, 2007.

[11]. J. Broekstra, A. Kampman, and F. Van Harmelen.

Sesame: An architecture for storing and querying RDF

data and schema information. Spinning the Semantic

Web: Bringing the World Wide Web to Its Full

Potential, page 197, 2003.

[12]. C. Weiss, P. Karras, and A. Bernstein. Hexastore:

sextuple indexing for semantic web data management.

Proceedings of the VLDB Endowment archive, 1(1):

1008-1019, 2008.
[13]. A. Kiryakov, D. Ognyanov, and D. Manov.

OWLIM a pragmatic semantic repository for OWL. In

Proceedings of the Conference on Web Information

Systems Engineering (WISE) Workshops, pages 182-

192, 2005.

[14]. H. Nagumo, M. Lu, and K. Watson. Parallel

algorithms for the static dictionary compression. In

Proc. IEEE Data Compression Conf, pages 162-

171,1995.

[15]. Y. Ye and P. Cosman. Dictionary design for text

image compression with JBIG 2. IEEE Transactions

on Image Processing, 10(6): 818-828, 2001.

[16]. J. Zobel, S. Heinz, and H. E. Williams. In-

memory hash tables for accumulating text vocabularies.

Information Processing Letters, 80: 2001.

[17]. S. Heinz, J. Zobel, and H. E. Williams. Burst tries:

A fast, effcient data structure for string keys. ACM

Transactions on Information Systems, 20:192-223,

2002.

