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ABSTRACT:  File compression brings two major benefits: it reduces the space needed to store files, and it 

speeds up data transfer across the network, or to or from disk. When dealing with large volumes of data, both 
of these savings can be significant, so it pays to carefully consider how to use compression in Hadoop.  For 

data intensive workloads, I/O operation and network data transfer will take considerable time to complete. 

When using Hadoop, there are many challenges in dealing with large data sets. Regardless of whether you 

store your data in HDFS or ASV, the fundamental challenge is that large volumes can easily cause network 

and I/O bottlenecks. One of the best known techniques of data compression is dictionary encoding. 

MapReduce, many instances of “map” steps process individual blocks of an input file to produce one or more 

outputs; these outputs are passed to “reduce” steps where they are combined to produce a single end result. 

In this paper we propose a MapReduce algorithm that efficiently compresses and decompresses a large 

amount of data. For testing purpose we use Hadoop Framework.  
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I. INTRODUCTION  

A concise, contemporary  definition of big 

data from Gartner defines it as "high-volume, -velocity 

and -variety information assets that demand cost-

effective, innovative forms of information processing 
for enhanced insight and decision making". So, big data 

can comprise structured and unstructured data, it exists 

in high volumes and undergoes high rates of change. 

The key reason behind the rise of big data is its use to 

provide actionable insights. Typically, organisations 

use analytics applications to extract information that 

would otherwise be invisible, or impossible to derive 

using existing methods. 

Industries such as petrochemicals and financial services 

have been using data warehousing techniques to 

process very large data sets for decades, but this is not 

what most understand as big data today. The key 
difference is that today's big data sets include 

unstructured data and allow for extracting results from a 

variety of data types, such as emails, log files, social 

media, business transactions and a host of others. For 

example, sales figures of a particular item in a chain of 

retail stores exist in a database and accessing them is 

not a big data problem .But, if the business wants to 

cross-reference sales of a particular item with weather 

conditions at time of sale, or with various customer 

details, and to retrieve that information quickly, this 

would require intense processing and would be an 

application of  big data technology. 

A. Big Data Storage 

One of the key characteristics of big data applications is 

that they demand real-time or near real-time responses.  

If a police officer stops a car they need data on that car 

and its occupants as quickly as possible. Likewise, a 
financial application needs to pull data from a variety of 

sources quickly to present traders with correlated 

information that allows them to make buy or sell 

decisions ahead of the competition. Data volumes are 

growing very quickly - especially unstructured data - at 

a rate typically of around 50% annually. As we move 

forward, this will only likely increase, with data 

augmented by that from growing numbers and types of 

machine sensors as well as by mobile data, social media 

and so on. All of which means that big data 

infrastructures tend to demand high processing/IOPS 
performance and very large capacity. The methodology 

selected to store big data should reflect the application 

and its usage patterns. Traditional data warehousing 

operations mined relatively homogenous data sets, 

often supported by fairly monolithic storage 

infrastructures in a way that today would be considered 

less than optimal in terms of the ability to add 

processing or storage capacity. By contrast, a 

contemporary web analytics workload demands low-

latency access to very large numbers of small files, 

where scale-out storage - consisting of a number of 
compute/storage elements where capacity and 

performance can be added in relatively small 

increments - is more appropriate. That implies a 

number of storage approaches. Firstly, there is scale-out 

NAS. This is file level access storage in which storage 

nodes can be daisy-chained together and storage 

capacity or processing power can be increased as nodes 

are added. Meanwhile, the presence of parallel file 

systems that scale to billions of files and peta bytes of 

capacity allow for truly big data sets that can be linked 

together across locations and interrogated.  
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Major scale out NAS products for big data include: 

EMC Isilon with its OneFS distributed file system; 

Hitachi Data Systems’ Cloudera Hadoop Distribution 

Cluster reference architecture; Data Direct Networks 

hScaler Hadoop NAS platform; IBM SONAS; HP 

X9000, and NetApp, which has now reached version 

8.2 of its DATA Ontap scale-out operating system. 

Another possible approach that allows to very large sets 
of data is object storage. This sees the replacement of 

the traditional tree-like file system with a flat data 

structure in which files are located by unique IDs, 

something like the DNS system on the internet. This 

potentially makes the handling of very large numbers of 

objects less taxing than is the case with a hierarchical 

structure. Object storage products are increasingly able 

to work with big data analytics environments and 

products include Scality’s RING architecture, Dell DX, 

EMC’s Atmos platforms. 

B. Need for compression  

When using Hadoop, there are many challenges in 

dealing with large data sets. Moreover, the internal 

MapReduce “shuffle” process is also under huge I/O 

pressure, and must often “spill out” intermediate data to 

local disks before processing can advance from the Map 

phase to the Reduce phase. Disk I/O and network 

bandwidth is a precious resource for any Hadoop 

cluster. Therefore, compressing files for storage can not 

only save disk space, but also speed up data transfer 

across the network. More importantly, when processing 

large volumes of data in a MapReduce job, the 

combination of data compression and decreased 
network load can sometimes bring significant 

performance improvements, due to the reduced I/O and 

network resource consumption throughout the 

MapReduce process pipeline. Enabling compression is 

typically a  trade off between I/O and speed of 

computation. Compression will typically reduce I/O 

and decrease network usage. Compression can happen 

when the MapReduce code reads the data or when it 

writes it out. When a MapReduce job is run against 

compressed data, CPU utilization is increased, because 

data must be de-compressed before files can be 
processed by the Map and Reduce tasks. Therefore, 

decompression usually increases the time of the job. 

However, we have found that, in most cases, the overall 

job performance will be improved by enabling 

compression in multiple phases of the job 

configuration. 

C. Dictionary Encoding 

A dictionary coder, also sometimes known as 

a substitution coder, is a class of  lossless data 

compression algorithms which operate by searching for 

matches between the text to be compressed and a set 

of strings contained in a data structure (called the 
‘dictionary’) maintained by the encoder. When the 

encoder finds such a match, it substitutes a reference to 

the string's position in the data structure. 

II. LITERATURE SURVEY 

Single machine dictionary encoding is used in RDF 

storage engines like Hexastore, 3Store and Sesame to 

store the information more efficiently [10-12]. 

Inference engines like Reasoning-Hadoop [3] and 

OWLIM [13] also compress the data with this 

technique. Dictionary encoding is not only used within 

the Semantic Web but also in several other domains. In 

[15] dictionary encoding is used for image 

compression. In [14] the authors present some parallel 

techniques to compress data using an pre-existing 

dictionary. In some domains, the dictionary is small 

enough to be kept in main memory. A good comparison 

between the performance of different in-memory data 

structures is given in [16]. From the comparison, it is 

clear that the hash table is the fastest data structure. [17] 

proposes a new data structure, called burst trie which 

maintains the strings in sorted, or near- sorted order, 

and has performance comparable to the one of a tree. 

III. APACHE HADOOP AND MAP REDUCE 

Hadoop is an open source software framework that 

supports data-intensive distributed applications. 

Hadoop is licensed under the Apache v2 license. It is 

therefore generally known as Apache Hadoop. Hadoop 

has been developed, based on a paper originally written 

by Google on Map Reduce system and applies concepts 

of functional programming. Hadoop is written in the 

Java programming language and is the highest-level 

Apache project being constructed and used by a global 

community of contributors. Hadoop was developed by 

Doug Cutting and Michael J. Cafarella. It is made up of 
2 parts : HDFS and Hadoop MapReduce. 

 

 

Fig.1. HDFS Architecture. 



                                                                       Khade and Shinde                                                                              15 

A. Working with HDFS 

The file content is split into large blocks (typically 128 

megabytes), and each block of the file is independently 

replicated at multiple Data Nodes. The blocks are 

stored on the local file system on the datanodes. The 

Namenode actively monitors the number of replicas of 

a block. When a replica of a block is lost due to a 

DataNode failure or disk failure, the NameNode creates 
another replica of the block. The NameNode maintains 

the namespace tree and the mapping of blocks to 

DataNodes, holding the entire namespace image in 

RAM. 

The NameNode does not directly send requests to 

DataNodes. It sends instructions to the DataNodes by 

replying to heartbeats sent by those DataNodes. The 

instructions include commands to: replicate blocks to 

other nodes, remove local block replicas, re-register and 

send an immediate block report, or shut down the node. 

B. Map Reduce Programming model 

MapReduce is a programming model and an associated 

implementation for processing and generating large 

data sets with a parallel distributed algorithm on 

a cluster. A MapReduce program is composed of 

a Map() procedure that performs filtering and sorting 

(such as sorting students by first name into queues, one 

queue for each name) and a Reduce() procedure that 

performs a summary operation (such as counting the 

number of students in each queue, yielding name 

frequencies). The “MapReduce System” (also called 

“infrastructure” or “framework”) orchestrates the 

processing by marshalling the distributed servers, 

running the various tasks in parallel, managing all 

communications and data transfers between the various 

parts of the system, and providing 

for redundancy and tolerance. The model is inspired by 

the map and reduce functions commonly used 
in functional programming, although their purpose in 

the MapReduce framework is not the same as in their 

original forms. The key contributions of the 

MapReduce framework are not the actual map and 

reduce functions, but the scalability and fault-tolerance 

achieved for a variety of applications by optimizing the 

execution engine once. As such, a single-

threaded implementation of MapReduce will usually 

not be faster than a traditional implementation. Only 

when the optimized distributed shuffle operation (which 

reduces network communication cost) and fault 

tolerance features of the MapReduce framework come 
into play, is the use of this 

model beneficial.  

MapReduce libraries have been written in many 

programming languages, with different levels of 

optimization. A popular open-source implementation is  

Apache Hadoop. The name MapReduce originally 

referred to the proprietary Google technology but has 

since been generalized. 

 

 

 
 

Fig. 2. Map Reduce Programming Model. 

VI. MAP REDUCE BASED DICTIONARY 

ENCODING   ALGORITHM 

MapReduce can be either used alone or in combination 

with an external DBMS. If we would use an external 

DBMS to store the dictionary table, we can minimize 

the number of queries exploiting the sorting ability of 

MapReduce. In this case, we could write an appropriate 
map function so that all the statements that share the 

same term in the same position would be grouped 

together. The reduce function could query the DBMS 

once per group and replace at most one term in each 

statement. The advantage of this approach compared to 

the naive one is that here we need to query the DBMS 

only once per term, and not at every occurrence. 

However, the performance will suffer from load 

balancing problems because the statements are grouped 

on the single terms, and some of them will generate 

groups that are too large to be processed by a single 

machine. We propose an alternative algorithm which 

does not use an external dictionary, but instead builds it 

internally. We do not execute one job for each part of 
the statements, but instead we first deconstruct the 

statements, replace the terms with the numerical IDs, 

and finally reconstruct them. It internally consists of 3 

Map Reduce tasks. The first one creates the dictionary. 

The second encodes the data with the dictionary 

algorithm. The third decodes the encoded file back to 

normal. 
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V. RESULTS AND OBSERVATIONS 

We have implemented this algorithm using 1 master 

and 2 slaves. The size of dataset (for experimental 

purpose) we took is of 1.4 KB. We have also compared 

our algorithm with 2 known text compression 

algorithms. The results are as follows: 

Table 1 : Comparison of results. 

 

Algorithm 

Used 

Rate of 

compressi

on 

Size of file 

after 

compressi
on 

Com

p. 

time 

Decomp. 

time 

MapReduc

e algorithm 

1.93 724Bytes 50 

secs 

70 secs 

GZip 1.85 756Bytes 7 

secs 

10 secs 

Approx. 

BZip2 1.86 751Bytes 10 

secs 

10 secs 

Approx. 

VI. CONCLUSIONS AND FUTURE WORK 

Thus a map reduce based encoding algorithm for text 

compression has been implemented. We have used 

Hadoop framework for our testing purpose. The results 

show that in a distributed environment, our Map reduce 

algorithm is slower as compared to the other two, but 

size of file after compression is less as compared to 

them. Hence we conclude that this algorithm can be 
used when we need to compress large files for storage 

purpose. We also conclude that the time required to 

decompress files using this algorithm is higher as 

compared to the compression algorithm. Future work 

can be suggested as to use this compression algorithm 

for multimedia compression. The work we have 

presented can be extended in many different ways. For 

example, the current algorithm can compress the data 

only once because the dictionary is built from scratch. 

Future work could aim to expand the algorithm to deal 

with incremental updates without recompressing the 

entire input every time. 
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